
#sqlsatParma

#sqlsat566November 26°, 2016

Giving Permissions through

Stored Procedures

Erland Sommarskog

SQL Server MVP

Erland Sommarskog

Independent consultant based in Stockholm

SQL Server MVP since 2001

esquel@sommarskog.se

http://www.sommarskog.se

#sqlsatParma

#sqlsat566November 26°, 2016

Sponsors

#sqlsatParma

#sqlsat566November 26°, 2016

Organizers

getlatestversion.it

#sqlsatParma

#sqlsat566November 26°, 2016

Giving Permissions through

Stored Procedures

If a user has permission to run a stored procedure, he

does not need permission for any action performed

inside the stored procedure – True or False?

True in some common cases –

but the general answer is False.

In this session we will learn how we can make the

statement become True in general.

#sqlsatParma

#sqlsat566November 26°, 2016

Agenda

• Ownership Chaining

• Certificate Signing

• The EXECUTE AS Clause

• The Dangers of TRUSTWORTHY

Slides and all scripts are available on http://www.sommarskog.se/present

http://www.sommarskog.se/present

#sqlsatParma

#sqlsat566November 26°, 2016

Ownership Chaining

No permissions are checked when a module (view,
procedure, function or trigger) accesses an object
with the same owner. Applies to:

• DML (SELECT, INSERT, UPDATE, DELETE & MERGE).

• Execution of stored procedures and functions.

Does not apply to:

• Dynamic SQL.

• Metadata access.

• Special permissions such as ALTER. 01_ownershipcain.sql

01_ownershipchain.sql

#sqlsatParma

#sqlsat566November 26°, 2016

Certificate Signing

The recipe:

1. Create a certificate.

2. Sign the procedure with the certificate.

3. Create a user from the certificate.

4. Grant the certificate user the permissions
needed (which could be role membership).

When something is signed with a certificate, this
permits you to verify that the contents is
unchanged using the public key only.

#sqlsatParma

#sqlsat566November 26°, 2016

What is this User?

This is a special type of user that exists only to
connect permissions and certificate. It cannot log in or
execute.

You can only create one user per certificate.

When the procedure has a valid signature, the token
of the certificate user is added to sys.user_token, just
like a role.

Net effect: the permissions of the certificate user are
added to the user’s own permissions.

02_certsigndb.sql

02_certsigndb.sql

#sqlsatParma

#sqlsat566November 26°, 2016

Observations on Certificate Signing

Procedure must be signed after each change.

The token and thus the permissions of the certificate
user are carried on to dynamic SQL and system
procedures.

But they are not carried on to nested procedures,
triggers or functions.

Keep in mind: DENY always trumps GRANT.

#sqlsatParma

#sqlsat566November 26°, 2016

Certificate Management

Each procedure with need of special permissions has

its own certificate, granted exactly the permissions

needed – the principle of minimum permission.

You can have a special stored procedure that

performs the signing. If developers are trusted, this

procedure can be called from the deployment script

for the stored procedures.

The password? Throw it away! 04_procsignscript.sql

04_procsignscript.sql

#sqlsatParma

#sqlsat566November 26°, 2016

Server-Level Permissions

1. Create a certificate in the master database.

2. Sign the procedure with certificate (if in master).

3. Create a login from that certificate.

4. Grant the login the required permissions.

While called “login”, this login cannot log in – it exists
only to connect permissions and certificate.

Tokens can be inspected in sys.login_token. 05_certsignserver.sql

05_certsignserver.sql

#sqlsatParma

#sqlsat566November 26°, 2016

Server-Level Permission in User DB

1. Create a certificate in the master database.

2. Create a login from the certificate.

3. Grant the login the required permissions.

4. Export certificate.

5. Move to user database.

6. Import certificate.

7. Sign the procedure.

8. Optional: drop private key.

#sqlsatParma

#sqlsat566November 26°, 2016

Export/Import Certificate

In all versions (from SQL 2005 and up):

• Export: BACKUP CERTIFICATE (to disk).

• Import: CREATE CERTIFICATE FROM FILE (and

delete the file).

In SQL 2012 and later:

• Export: certencoded() and certprivatekey().

• Import: CREATE CERTIFCATE FROM BINARY.
06_exportimport.sql

06_exportimport.sql

#sqlsatParma

#sqlsat566November 26°, 2016

What About Availability Groups?

In an AG, certificate, login and permissions must exist on
all nodes in the AG, so that things can work after a
failover.

Big hassle? Don’t worry, I have a script for you that:

• Creates cert and login and grants permissions in
master.

• Exports the cert to the user database and signs the
procedure.

• For AGs: Loops over the other nodes in the AG, using a
temporary linked server to copy cert, login and
permissions.

• You must specify: database, procedure and permissions.
07_procsignscript_server.sql

07_procsignscript_server.sql

#sqlsatParma

#sqlsat566November 26°, 2016

EXECUTE AS & DB Permissions

Proper version:

1. Create a proxy user WITHOUT LOGIN with the
name derived from the procedure.

2. Grant the proxy user the required permissions.

3. Add the clause
WITH EXECUTE AS 'SPName$Proxy'.

Lazy version:

1. Use WITH EXECUTE AS OWNER and no proxy
user. 08_executeasdb.sql

08_executeasdb.sql

#sqlsatParma

#sqlsat566November 26°, 2016

EXECUTE AS, cont’d

A lot simpler than certificates. ...but!

• Lazy version breaks the principle of granting
minimum permission.

• Breaks schemes for row-level security and auditing
based on SYSTEM_USER, USER etc.

• This can be mitigated by using original_login() or
context_info/session_context – requires planning
ahead.

• If your system is not ready for EXECUTE AS – you
can stop it with a DDL trigger. 09_stopexecas.sql

09_stopexecas.sql

#sqlsatParma

#sqlsat566November 26°, 2016

Server-Level Permissions and

EXECUTE AS

Create a proxy login, grant permissions, add EXECUTE
AS clause?

When impersonating a database user, we are
sandboxed into the current database and cannot
access things outside it, unless two doors are opened:

1. The database must be set TRUSTWORTHY.

2. The database owner must have been granted the
permission AUTHENTICATE SERVER. (Which is the
case if owner = sa.)

10_execasserver.sql

11_trustworthy1.sql

10_execasserver.sql
11_trustworthy1.sql

#sqlsatParma

#sqlsat566November 26°, 2016

TRUSTWORTHY - a Security Risk

With certificate signing, the DBA can request to

review the code every time an application admin

wants to change an SP with server-level access.

EXECUTE AS + TRUSTWORTHY gives the

application admin carte blanche to change the SP

to his/her own liking.

But that is not all. Danger alert! 12_trustworthy2.sql

12_trustworthy2.sql

#sqlsatParma

#sqlsat566November 26°, 2016

TRUSTWORTHY, cont’d

Combined with AUTHENTICATE SERVER, a person
with db_owner rights (or rights to create and
impersonate users) can elevate to sysadmin.

If the database owner is a plain user, you get a second
chance to react before you grant AUTHENTICATE
SERVER, even if you made it TRUSTWORTHY.

It is OK to open both doors, IF everyone with rights to
create users in the database already are sysadmin.

…and this will never change. (Think: consultants.)

#sqlsatParma

#sqlsat566November 26°, 2016

Recap: Ownership Chaining

What you use 95% of the time, for plain and

simple DML in stored procedures.

• Does not work with dynamic SQL.

• Does not work with “advanced” permissions.

• Does not work with metadata.

• Does not work with server-level permissions.

#sqlsatParma

#sqlsat566November 26°, 2016

Recap: Certificate Signing

Permits you to grant about any database or server
permission through stored procedures in a fine-
grained way. (But cannot overcome an explicit DENY.)

Seems to be a bit of hassle at first, but with
organisation and throw-away passwords it’s not a big
deal.

The preferred method for database permissions.

Always use certificates for server-level permissions!

#sqlsatParma

#sqlsat566November 26°, 2016

Recap: EXECUTE AS

Good for the lazy and casual. :-)

Implications for auditing and row-level security that
requires you to plan ahead.

Can be OK for database permissions if conditions are
relaxed (or you need to overcome DENY).

Always use certificate signing for server-level
permissions!

#sqlsatParma

#sqlsat566November 26°, 2016

It’s Getting Very Near the End…

Erland Sommarskog

esquel@sommarskog.se

Scripts and slides on
http://www.sommarskog.se/present

Giving Permissions through Stored Procedures on the
web: http://www.sommarskog.se/grantperm.html

…and beware of TRUSTWORTHY! 13_cleanupall.sql

mailto:esquel@sommarskog.se
http://www.sommarskog.se/present
http://www.sommarskog.se/grantperm.html
13_cleanupall.sql

