
Erland Sommarskog

Data Platform MVP

When Things Go Wrong –

Error handling in SQL Server

Erland Sommarskog

Independent consultant based in Stockholm

SQL Server MVP since 2001

esquel@sommarskog.se

http://www.sommarskog.se

THANKS to all Sponsors!

EXPO SPONSORS

EXPO LIGHT SPONSORS

EVENT SPONSORS

Meet me at the Community Zone

After this session, you can speak with me in the
Community Zone

WE MIGHT

• Discuss additional questions

• Review parts of my session in more detail

• Network

• Take selfies… ☺

Agenda

Focus: How to handle unexpected errors.

• What action does SQL Server take in case of error?

• SET XACT_ABORT ON.

• TRY-CATCH.

• How to write CATCH blocks.

• Client-Side Error Handling.

• How to handle nested procedures and transactions.

• A quick look at natively compiled stored procedures.

PlainTest.sqlDefault (when XACT_ABORT OFF)

1. Close the connection.

2. Abort the batch and roll back transaction.

3. Abort the batch without rolling back.

4. Abort the scope and continue in caller.

5. Roll back statement and continue on next.

What Actions Can SQL Server Take?Internal SQL

Server Errors

Compilation

errors at run-

time

Many user

errors willy-nilly

Appeared first

in SQL 2012

Many user

errors willy-nilly

PlainTest.sql

What Actions Can SQL Server Take?

SET XACT_ABORT ON changes this:

1. Close the connection.

2. Abort the batch and roll back transaction.

3. Abort the batch without rolling back.

4. Abort the scope and continue in caller.

5. Roll back statement and continue on next.

6. Ignores XACT_ABORT ON.

RAISERROR,

Error 266,

syntax errors.

Attention Signals

Tells SQL Server to abandon execution.

Occurs with the client-side error ”Timeout expired”.

Also generated by the red button in SSMS.

Statement is always rolled back.

Transaction rolled back only if XACT_ABORT is on.

Recommendation

Always have this statement on top of your stored
procedures:

SET XACT_ABORT, NOCOUNT ON

More consistent error behaviour.

Reduces the risk for orphaned transactions.

Takeaway So Far

You cannot rely on that you will be able to continue
execution on error.

You cannot rely on that execution will be aborted.

Therefore:

• Keep it simple.

• Use TRY-CATCH.

TRY-CATCH

Error in TRY block transfers execution to CATCH
block.

Transaction may be doomed – must be rolled back.

Errors that roll back transaction => Dooming
errors.

Perfectly reasonable for deadlock, resource errors.
Less so for conversion errors.

Transaction always doomed with XACT_ABORT ON.

TryCatch.sql

TryCatch.sql

Not All Errors Are Catchable

Internal errors that close the connection.

Compilation errors in the scope they occur – can be
caught in outer scope.

Various odd errors cannot be caught, more
common with linked servers or CLR.

Attention signals.

CATCH Block Recipe

Important principle: Since this is code that is in
every procedure it should be short and non-
intrusive. Two lines, that’s all:

1. Roll back any open transaction.

2. Re-raise the error.

Roll Back Open Transactions

IF @@trancount > 0 ROLLBACK TRANSACTION
Always have this line.

You may not have a BEGIN TRANSACTION today – but
that could change tomorrow or two years later.

You may call a procedure which begins a transaction
but fails to commit/roll back.

What about caller’s transaction? We’ll talk about that
later.

Re-raising the Error

Custom procedure
• Only choice on SQL 2005/2008.
• Want to log error or other custom behaviour.
• Avoids the semicolon trap.

;THROW
• Simple. :-)
• All error messages are preserved as-is.
• Makes sure that execution is aborted.

ReRaise.sql
ReThrow.sql

Client-side Error Handling

All calls to SQL Server must be error-checked and
in case of error, the client must always submit
IF @@trancount > 0 ROLLBACK TRANSACTION
(Or rollback through its own transaction object.)

Don’t rely on the SQL code having XACT_ABORT
ON. Each component should do its job.

Make sure you get all result sets! AllResultSets.cs

AllResultSets.cs

”Nested” Transactions

BEGIN TRANSACTION

BEGIN TRANSACTION

COMMIT TRANSACTION

COMMIT TRANSACTION

ROLLBACK TRANSACTION

Transaction starts.

Increments @@trancount.

@@trancount = 0 =>

Transaction commits.

Commits nothing,

decrements @@trancount.

Rolls back it all.

Nested Procedures

What if outer procedure starts a transaction...

...and calls an inner procedure that also starts a
transaction?

Should CATCH handler of inner really roll back it all?

Ideally, no.

In practice YES, because:

• There is no better way in SQL Server.

• The inner procedure has failed to fulfil its contract.

Savepoints to the Rescue?

BEGIN TRANSACTION MyTran
-- First part
SAVE TRANSACTION MySave
-- Second part
ROLLBACK TRANSACTION MySave

This rolls back only Second Part, but transaction is
alive and First Part can still be committed.

Useful?

Savepoints are Useless

• Cannot roll back to savepoint when transaction
is doomed.

• Always doomed with XACT_ABORT ON.

• And even with OFF, rollback is only possible for
some errors.

• Not supported in distributed transactions.

• Not supported with mem-optimised tables.

Natively Compiled Procedures

CREATE PROCEDURE hekaton_sp

WITH NATIVE_COMPILATION, SCHEMABINDING AS

BEGIN ATOMIC WITH

(TRANSACTION ISOLATION LEVEL=SNAPSHOT,
LANGUAGE='us_english')

-- SQL code here.

END

BEGIN ATOMIC

END

Natively Compiled Procedures, cont’d

Procedure == Transaction.

Only need TRY-CATCH for anticipated errors.

BEGIN/COMMIT/ROLLBACK TRAN not permitted.

A nested SP call defines an implicit savepoint.

An uncaught error aborts the procedure and rolls back
to the savepoint.

Transactions only doomed for a reason – concurrency
and resource errors. XACT_ABORT has no effect.

In short: how error handling should be!

Summary – Aims and Means

Always communicate unexpected errors – don’t lure
users to think they see correct data.

• Re-raise the error!

• Get all result sets!

Always abort execution on unexpected errors –
don’t persist incorrect data.

• SET XACT_ABORT ON

• IF @@trancount > 0 ROLLBACK TRANSACTION

• Re-raise the error!

Summary – Aims and Means

Prevent orphaned transactions.

• SET XACT_ABORT ON

• IF @@trancount > 0 ROLLBACK TRANSACTION

• Also in client code!!

Don’t lose the original error message – without
it troubleshooting is very difficult.

• Keep things simple.

• Watch out for the semicolon trap!

That’s All Folks!

Erland Sommarskog

esquel@sommarskog.se

Slides and scripts on
http://www.sommarskog.se/present

Three parts and three appendixes? Start here:

http://www.sommarskog.se/error_handling/Part1.html

mailto:esquel@sommarskog.se
http://www.sommarskog.se/present
http://www.sommarskog.se/error_handling/Part1.html

Please evaluate all sessions!
QR / LINK on posters and in program

